Extensions 1→N→G→Q→1 with N=C42 and Q=C3×S3

Direct product G=N×Q with N=C42 and Q=C3×S3
dρLabelID
S3×C4×C1296S3xC4xC12288,642

Semidirect products G=N:Q with N=C42 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C421(C3×S3) = C3×C42⋊S3φ: C3×S3/C3S3 ⊆ Aut C42363C4^2:1(C3xS3)288,397
C422(C3×S3) = C42⋊C3⋊S3φ: C3×S3/C3C6 ⊆ Aut C42486C4^2:2(C3xS3)288,406
C423(C3×S3) = (C4×C12)⋊C6φ: C3×S3/C3C6 ⊆ Aut C42366+C4^2:3(C3xS3)288,405
C424(C3×S3) = S3×C42⋊C3φ: C3×S3/S3C3 ⊆ Aut C42366C4^2:4(C3xS3)288,407
C425(C3×S3) = C3×C422S3φ: C3×S3/C32C2 ⊆ Aut C4296C4^2:5(C3xS3)288,643
C426(C3×S3) = C3×C423S3φ: C3×S3/C32C2 ⊆ Aut C4296C4^2:6(C3xS3)288,647
C427(C3×S3) = C3×C424S3φ: C3×S3/C32C2 ⊆ Aut C42242C4^2:7(C3xS3)288,239
C428(C3×S3) = C12×D12φ: C3×S3/C32C2 ⊆ Aut C4296C4^2:8(C3xS3)288,644
C429(C3×S3) = C3×C4⋊D12φ: C3×S3/C32C2 ⊆ Aut C4296C4^2:9(C3xS3)288,645
C4210(C3×S3) = C3×C427S3φ: C3×S3/C32C2 ⊆ Aut C4296C4^2:10(C3xS3)288,646

Non-split extensions G=N.Q with N=C42 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C42.1(C3×S3) = C3×C42.S3φ: C3×S3/C32C2 ⊆ Aut C4296C4^2.1(C3xS3)288,237
C42.2(C3×S3) = C3×C12⋊C8φ: C3×S3/C32C2 ⊆ Aut C4296C4^2.2(C3xS3)288,238
C42.3(C3×S3) = C12×Dic6φ: C3×S3/C32C2 ⊆ Aut C4296C4^2.3(C3xS3)288,639
C42.4(C3×S3) = C3×C122Q8φ: C3×S3/C32C2 ⊆ Aut C4296C4^2.4(C3xS3)288,640
C42.5(C3×S3) = C3×C12.6Q8φ: C3×S3/C32C2 ⊆ Aut C4296C4^2.5(C3xS3)288,641
C42.6(C3×S3) = C12×C3⋊C8central extension (φ=1)96C4^2.6(C3xS3)288,236

׿
×
𝔽